
Model-based Autonomy for Robust Mars Operations
James A. Kurien P. Pandurang Nayak* Brian C. Williams

NASA Ames Research Center

MS 269-2, Moffett Field, CA 94035

{kurien, nayak, williams} @ptolemy.arc.nasa.gov

ABSTRACT-- Space missions have historically relied upon

a large ground staff, numbering in the hundreds for
complex missions, to maintain routine operations. When an

anomaly occurs, this small army of engineers attempts to

identify and work around the problem. A piloted Mars

mission, with its multiyear duration, cost pressures, half-

hour communication delays and two-week blackouts cannot

be closely controlled by a battalion of engineers on Earth.

Flight crew involvement in routine system operations must
also be minimized to maximize science return. It also may

be unrealistic to require the crew have the expertise in each

mission subsystem needed to diagnose a system failure and

effect a timely repair, as engineers did for Apollo 13.

Enter model-based autonomy, which allows complex

systems to autonomously maintain operation despite

failures or anomalous conditions, contributing to safe,

robust, and minimally supervised operation of spacecraft,

life support, ISRU and power systems. Autonomous

reasoning is central to the approach. A reasoning algorithm
uses a logical or mathematical model of a system to infer

how to operate the system, diagnose failures and generate

appropriate behavior to repair or reconfigure the system in

response.

The "plug-and-play" nature of the models enables low cost

development of autonomy for multiple platforms.

Declarative, reusable models capture relevant aspects of the
behavior of simple devices (e.g. valves or thrusters).

Reasoning algorithms combine device models to create a

model of the system-wide interactions and behavior of a

complex, unique artifact such as a spacecraft. Rather than

requiring engineers to envision all possible interactions and

failures at design time or perform analysis during the
mission, the reasoning engine generates the appropriate

response to the current situation, taking into account its

system-wide knowledge, the current state, and even sensor

failures or unexpected behavior.

1. INTRODUCTION

Exploring and ultimately settling Mars will be a milestone
in the development of our civilization and an
uncompromising measure of our courage, cleverness and

resolve. Accordingly, it will also be an unprecedented
technical challenge, involving multiple interdependent
mission elements, multiyear duration, incredible budgetary
pressure and the duty to protect human lives in a harsh
environment millions of miles from Earth. Evidence of the

utility of highly capable, robust and coordinated
autonomous systems in meeting this challenge pervades
mission scenarios such as Mars Direct [1] and the NASA
Mars Reference Mission [2].

Model-based autonomy involves the use of automated
reasoning engines and high level models of the system
being controlled to generate correct system behavior on the
fly, even in the face of failures or anomalous situations.

This approach is proving to be a robust and cost effective
method for developing more highly capable autonomous
systems than have been deployed in the past and might
prove invaluable to the development of piloted missions to
Mars.

The next section of this paper describes why autonomous
systems are needed to explore Mars. Section 3 briefly
discusses the varieties of model-based autonomy research
going on at NASA Ames Research Center. Section 4
discusses how this work can contribute to cheap, safe,

robust, and minimally supervised systems on Mars. Section
5 describes Livingstone, one of the reasoning engines
developed at Ames that will be tested onboard a spacecraft
next year. Section 6 describes a number of Mars-related
testbeds that are making use of model-based autonomy
technology.

This paper is meant to serve as an introduction to the
concepts behind model-based autonomy for those who are
not computer scientists and as a rough position paper
regarding how those concepts might assist in a journey to
Mars. The References section contains pointers to a
number of papers on model-based autonomy with more
technical detail and concrete explication.

2. THE UTILITY OF AUTONOMY ON MARS

The need for robust, inexpensive and productive operation
of remote assets on Mars appears throughout both the Mars
Direct scenario and the Mars Reference Mission. In both of

these mission designs, initial mission elements such as in-
situ propellant production (ISPP) plants and the crew return

* Recom Technologies



vehiclemustbeabletooperateforaperiodyearsinaharsh
environmentwith limiteddownlinkcapabilitiesanda
reducedsetofgroundcontrolpersonnel.Suchsystemsmust
maintainefficientoperationinspiteof unexpectedfailures,
novelenvironmentalphenomenaand degradedsystem
capabilities.Safetyplaceshigh demandson system
robustness:thecrewcannotdepartEarthif propellantplant
downtimeresultsin inadequateproductionor if thereturn
vehiclecannotverifynominaloperation.

OncethecrewdoesdepartEarth,theywillbetravellingtwo
ordersof magnitudefartherfromhomethantheApollo
crews.Theywill beseparatedfrommissioncontrolby
thirty-minutecommunicationdelaysandpotentiallymulti-
day communicationblackoutsimposedby the relative
positionsofMarsandtheEarth.Therewillbeanumberof
systemsuponwhichthecrew'sabilityto reachMarsor
surviveanaborttoEarthwilldepend:life support,attitude
control,propulsion,communicationsandpowergeneration
areexamples.Whileonly life supportmightseemto
requireimmediateresponseto anomalies,manyother
situationsrequireonboardresponseaswell:losingattitude
controlduringanaerobreakingmaneuver,failureswhich
needtobequicklysafed,andlossof communicationswith
Earthareallcasesinpoint.

OnceontheMartiansurface,maximizationof exploration
becomesafocusinadditionto safety.Wedonotyethave
theresourcesto sendcrewsof fifteento Marsto runa
Martianscienceoutpostandsupportsystem.Hencecrew
involvement in routine operations such as controlling the
life support system or maintaining rovers must be
minimized and minor anomalies must be resolved locally
rather than awaiting ground analysis. In addition, to
maximize science return in this unknown environment,
operations on Mars must be able to rapidly adapt to take
advantage of new science opportunities or make the best of
degraded capabilities.

These challenges to maintaining safety and productivity on
Mars from Earth for several years are daunting when one
considers the current state of mission operations. Current
piloted missions rely upon near-instantaneous contact with
hundreds of engineers and operators on the ground. In
addition, recent attempts to teleoperate relatively simple
systems for ninety days on Mars resulted in a considerable
fraction of the mission being used to determine the state of
the remote system and return it to productive operation,
often over the course of a day or more [3].

The Reference Mission therefore explicitly calls for
autonomous systems on Mars to allow unmanned systems
to robustly prepare for human arrival, to protect crew and
resources by rapidly responding to critical failures, to free
explorers from routine operations and to control operations

costs for this complex, multi-year mission. In this context,
autonomy means the ability to correctly react to a wide
range of circumstances, both usual and anomalous, without
the need for direct human supervision. If available, a
robust onboard autonomy capability would enable safer,
more affordable missions to Mars by allowing complex
systems such as life support systems or spacecraft attitude

control systems to operate for extended periods of time
without supervision over a wide range of nominal and
anomalous operating conditions. The benefits would be
increased safety and reduced downtime for mission critical
systems, leverage of scarce human skills by automation of
routine tasks, and reduced ground operations due to
unattended recovery from anomalies and less detailed
commanding requirements.

Currently, NASA's operational experience with the type of
high capability, failure-tolerant autonomy described in the
Reference Mission is low. To date, no fully automated
power plants, life support, or cryogen plants have been
deployed. Some automated planning and scheduling has
been used to pre-compute command sequences for
spacecraft and to schedule space shuttle refurbishment, but
no deployed system has autonomously replanned its
mission activities in the field. In addition, the robotic

systems that have been deployed in space have been almost
entirely dependent upon pre-computed command sequences
relayed from Earth controllers, and have not been highly
autonomous in the sense conveyed above.

Of course, every unmanned system sent into space has
required some level of autonomy: if a spacecraft cannot at
least point its antenna at Earth and wait for help after the
expected kinds of failures, it is likely to be lost. Currently
programmers and mission control operators use their
commonsense understanding of hardware and mission goals
to produce code and control sequences that will allow a
spacecraft or other system to achieve some goal while
allowing for some (usually very small) amount of
uncertainty in the environment. This has the disadvantages
of being relatively time intensive, error prone, and not
particularly reusable. Because of the amount of analysis
involved, such systems usually allow for uncertainty by
being extremely conservative and provide the minimal
amount of adaptability necessary to raise the likelihood of
survival of the spacecraft. If an anomaly occurs the
spacecraft or other system typically halts all activity,
achieves a safe mode, and awaits further instructions. One

notable exception is the attitude and articulation control
system on the Cassini spacecraft, which represents the state
of the art in deployed spacecraft autonomy [4] and which

has not been replicated on the "faster, better, cheaper"
missions which have followed.

The cost to develop highly robust autonomous control
software and the ability of such systems to improve safety
and productivity of assets deployed on Mars (or deep space
or Europa for that matter) are significant risk factors that
impact NASA's ability to accurately plan and scope future
missions. One intent of the work described in the paper,
model-based autonomy, is to demonstrate that highly robust
autonomous systems can be developed more easily and
more cheaply than the more modest systems which have
been deployed to date.

What is model-based autonomy?

Model-based autonomy refers to the achievement of robust,
autonomous operation through a growing set of reusable
artificial intelligence (AI) reasoning algorithms that reason



aboutfirst principlesmodelsof physicalsystems(e.g.
spacecraft).In this context,a model is a logical or
mathematical representation of a physical object or piece of
software. A first principles model captures what is true
about behavior or structure of the object (e.g. fluid flows

through an open valve unless it is clogged). This is as
opposed to traditional programs or rule-based expert
systems, which capture what to do (e.g. turn on valves A, B,
& C to start fuel flow) but unfortunately work only in
certain implicit contexts (e.g. valves A, B, & C are working
and A, B & C happen to control the fuel flow).

Since model-based autonomous systems do not contain an
encoding of what to do in each situation, they must reason
about the appropriate action to take or conclusion to draw
based upon their models and the currently available
information about the environment. The past few decades
of AI research have produced reasoning engines that can
plan a course of action to achieve a goal, identify the
current state of a physical system, reconfigure that system
to enable some function (e.g. make the engine thrust) and so
on from a first principles model.

Reasoning directly from the model, the current observations
of the world and the task at hand provides many large
advantages over traditional software development. Not
least among these are that the system is robust in uncertain
environments since it was not hard coded to respond to
certain situations, the models and inference engines can be
reused, and the models explicitly capture the assumptions
about the system that are being relied upon to control it.

3. MODEL-BASED AUTONOMY AT NASA AMES

The Autonomous Systems Group within the Computational
Sciences Division at NASA Ames Research Center focuses

on pursuing basic computer science research to increase the
competence of autonomous systems and on providing basic

autonomy technologies to NASA mission centers.

Many of the approximately twenty researchers within the
group focus on model-based approaches to autonomy. As
described above, a model-based autonomy architecture uses
a declarative specification of a system's components and
their interconnections to reason about the system as a whole
and to provide general capabilities such as resource
planning, execution monitoring, fault diagnosis and
automated recovery. These compositional (plug-and-play)
models adapt the generic architecture to a specific platform,

enabling rapid development of autonomous control and
health maintenance software for new systems.

Briefly, here is a small sampling of the many autonomy
technologies being investigated within the Autonomous
Systems Group that could be considered model-based. In
Section 5, we will focus on one technology in slightly more
detail.

Model-based discrete controllers

This line of research seeks to create a general engine

for providing discrete control of a hardware and

software system using only a declarative model of that

system's components. This reasoning engine must

infer the most likely state (referred to as a mode) of

each component of the controlled system (including

failures), accept a high level configuration goal (e.g.

make the spacecraft produce thrust), and return a set of
commands for the system's components that will

achieve the configuration goal. The engine must use all

available data to correctly handle sensor failure,

multiple faults and novel recoveries.

The Livingstone system for state identification and

reconfiguration is such an engine, which has been

developed at NASA Ames [5] and is being deployed in

a number of NASA projects described below and in
Section 6.

Model-Based Decompositional Learning (MDL)

This research uses a model of a system's structure to

decompose complex parameter estimation problems
into largely independent and solvable estimation

subproblems. The Moriarty system is being developed

at Ames to provide this capability and has been applied

to developing a highly efficient office building
environment controller [6].

Planning & Scheduling

Planning and scheduling research develops algorithms

that accept a goal some system must achieve and emit a

plan for causing the system to achieve the goal within
the bounds of the resources allotted. The plan might be

a simple sequence of commands or more generally it

might be a partially ordered set of commands, a

recurring schedule, or a plan with contingent branches

which are executed based upon the outcome of

previous actions. Unlike the simple configuration
achievement of the discrete controller mentioned

above, a planning and scheduling system must
deliberate more thoroughly to achieve goals that
involve oversubscribed resources, irreversible actions,

or time-based constraints such as "take pictures of the

following ten asteroids in the next hour".

There are several planning and scheduling systems

being pursued at NASA Ames, including the PS

planner/scheduler [7]. Previous applications of NASA

Ames planning technology include scheduling of

observation requests onto an array of automated

telescopes and scheduling of ground processing for the

space shuttle.

The Livingstone engine, the PS planning and scheduling
system and the Smart Executive plan execution system [8]
have been combined to form the Remote Agent autonomy
architecture. NASA Ames and the New Millennium

Program at the Jet Propulsion Laboratory (JPL) developed
the Remote Agent architecture and will flight-test it during
a weeklong autonomous operations experiment on the New
Millennium Deep Space 1 spacecraft. During this week,
control of the spacecraft will be turned over to the Remote



Agentsystem.PSwillgenerateplansthatachievehigh-level
missiongoalsspecifiedby thegroundcontrollers.The
SmartExecutivewill decomposethosepartiallyordered
plansintoa sequenceof commandsto thespacecraftand
executethem.Livingstonewill determinethestateof the
spacecraftateachcommandandnotifytheSmartExecutive
if anyfailuresorunexpectedresultshaveoccurred.If any
suchfailuresoccur,Livingstonewillbeusedtofindarepair
or workaroundthatallowstheplanto continueexecution.
Simulatedfailureswill alsobeinjectedfor thepurposeof
testing,asonecannotrelyonaspacecraftfailingduringa
particularweek.If theplancannotbeexecuted,theSmart
Executivewill inform the plannerof the degraded
capabilitiesof thespacecraftandaskfor a newplanthat
still achievesthemissiongoals.Muchmoredetailonthe
RemoteAgentanditsexperimentonDeepSpace1canbe
foundin [9]and[10].

In additionto developing the core automated reasoning
engines that enable model-based autonomy, NASA Ames is
also pursing a number of research directions intended to
further reduce the cost and effort required to develop and
operate a model based autonomous system. Below two
representative examples are described.

Model-based Programming Environments

This task provides engineer-friendly tools to visually

develop the models used by the above reasoning
engines, generate test suites from the model definitions,

and enable collaboration during model development.

Human Centered Autonomous Agents

This task draws upon the lessons learned during

development of Remote Agent. It seeks to develop
methods to smooth collaboration between humans and

autonomous systems, providing variable levels of

autonomy and enabling cooperation between humans

and autonomous systems. The intent is to minimize the
need for human involvement in routine operations, but

to avoid interfering with it when it is needed or simply

desired. The goal is to allow a small team to interact

with and direct one or more autonomous systems and

to allow humans to quickly assimilate the situation

should an autonomous system realize it is out of scope

and request human intervention.

4. BENEFITS OF MODEL-BASED AUTONOMY

Our initial experience has been that model-based autonomy
can drastically reduce cost compared to traditional software
development while increasing robustness, safety and
maintainability of the autonomous system. We believe this
experience will carry through to additional NASA missions
that use this type of technology to achieve high capability
autonomy. We discuss a number of areas where model-
based autonomy can provide benefits below.

Safety and Reliability

Model-based autonomous systems increase safety and

efficiency primarily via timely and correct response to
anomalies. They can detect failures as soon as or very

shortly after they occur and automatically reason through
system-wide ramifications. They can then immediately
notify personnel or autonomously attempt to mitigate the
effects of the problem. A rapid, well-reasoned response

minimizes the impact of failures or unforeseen scenarios.

Reliability is also increased by raising the visibility of the
mapping between the control system and the apparatus it is
meant to control. For example, with hard-coded fault
protection designs knowledge about the controlled system is
implicit rather than explicit. This means that we require the
fault protection software developers to understand the
system, understand the system-wide ramifications of
various symptoms that might arise and actions that might be
taken in response (taking into account the system might

have experienced previous failures by the time the current
problem occurs). The results of that understanding must
then be encoded in a low-level procedural programming
language. If the system is modified, as is often the case
with one-of-a-kind hardware, that mapping from
understanding to procedural code must be reconstructed
and the necessary modifications to the code made, a likely
time for the insertion of errors. Under these conditions

even developing a fault protection system which has been
scaled back to the minimal essentials can be a challenging
task.

In contrast, with model-based fault diagnosis the fault

protection software engineers explicitly model how the
system behaves in nominal and (if known) failure cases.
Relevant assumptions about the behavior and structure of
the controlled system are explicitly stated in a declarative

model, which is easily inspected and understood.
Appropriate behavior is generated by operation of the
heavily tested inference algorithms on the explicit models,
not by low level statements of standard procedural software
codes, which have an implicit and tenuous correspondence
to written requirements or the software developer's

evolving mental model of the system.

Finally, an approach which features reuse of reasoning
engines and component models over multiple mission
elements benefits reliability, cost and capability in the same
manner that standard engines for database or graphics
functionality benefit other software developers. Cost is
reduced as development of the autonomy capability is
amortized over several applications. Reliability is increased
as the architecture's inference engines are invoked

thousands of times before flight and as testing aggregates
over multiple applications of the system. Capability is
increased as reasoning engine improvements made and

verified for one application are available for use in
subsequent applications.

Development Effort

Model-based systems have proven extremely easy to
design, implement and maintain. Applications consist of
explicit, easily acquired "common-sense" level models of
the controlled system. Gone is the need to develop
procedural code that mingles implicit system models with
implementation details, complicating development and
maintenance. There is also no need to constantly reason



throughtheinteractionsof thesystem'smanycomponents
inordermaintaincodeorrulesfor everypossiblescenario
orspacecraftconfiguration.

Declarative,highlevelmodelsofthestructureandbehavior
of relevantdevicein thesystemcanbequicklydeveloped,
unittestedandpluggedtogether.Appropriatesystem-wide
behavioris thengenerated.Devicemodelscaptureonly
informationaboutthelocaldevice,andnotproceduresfor
controllingor recoveringthedevicewithinthecontextof
somespecificspacecraftorsystem.Thismakesthemboth
reusableto modeldifferentsystemsandeasilymodifiedor
replacedasaspecificsystembeingmodeledisrevised.

As the models are declarative and contain only first
principles knowledge rather than context-dependent
procedures or rules, the model of a single system can also
be reused in a number of contexts. In the Remote Agent
experiment, a single set of device models is used to monitor
execution of commands, diagnose failures, provide
recoveries, generate discrete event simulators and
automatically produce descriptions of the spacecraft. Reuse
could be taken much farther than time allowed during the
Remote Agent experiment. One could use the same model

to compile a static fault tree, compile interface definitions
for communicating with the Remote Agent, and so on. In
addition by historical accident the high level planning and
scheduling component of Remote Agent did not accept the
same model as was used for all of the above tasks, but an

effort is underway to unify the two languages before
Remote Agent is for additional mission operations.

Operations Cost

Cost goals demand that mission planning be streamlined
and mission control intervention in routine spacecraft and
Mars surface operations are minimized. Systems that can
autonomously monitor, adjust and repair themselves, even
in the face of novel situations, obviously decrease the time
the ground controllers or crew must devote to such tasks.
In addition, when human involvement is required or
desired, our goal is to drastically reduce operator effort,
allowing an operator to control more systems or a
crewmember to operate a system more quickly or with less
detailed training. Model-based autonomy allows very high
level interaction. The current state of the system can be
presented in hierarchical diagrams generated from the
models. Commands can be goals to be achieved rather than

detailed instructions. Significantly, when a user wants to
interact with an model-based system, its explicit internal

representation allows it to explain why it has made certain
inferences, why it decided to take certain actions or what it
would do in a hypothetical situation. These features

combine to make operating a model-based system
potentially far more intuitive, cooperative and efficient than
current spacecraft operations.

5. LIVINGSTONE

As mentioned in Section 3, Livingstone is a model-based
discrete controller. Its function is to infer the current state

(mode) of each relevant device making up the system being
controlled and to recommend actions that can reconfigure

the system so that it achieves the currently desired
configuration goals, if possible. In practice, these
configuration goals could be provided by a human operating
some apparatus by issuing high level configuration
commands, or by some automated system such as the Smart
Executive (Exec) mentioned above, which decomposes a
high level plan into a series of configuration goals to be
achieved. Purely for the sake of the discussion below, we
will assume the Exec is providing the configuration goals
and that the system being controlled is a spacecraft.

To track the modes of system devices, Livingstone
eavesdrops on commands that are sent to the spacecraft
hardware by the Exec. As each command is executed,
Livingstone receives observations from spacecraft's
sensors, abstracted by monitors in the real time control
software for the Attitude Control Subsystem (ACS),
communications bus, or whatever hardware is present.
Livingstone combines these commands and observations
with declarative models of the spacecraft components to
determine the current state of the system and report it to the
Exec. A pathologically simple example is shown
schematically in Figure 1. In the nominal case, Livingstone
merely confirms that the commands had the expected effect
on spacecraft state. In case of failure, Livingstone diagnoses
the failure and the current state of the spacecraft and
provides a recovery recommendation. A single set of
models and algorithms are exploited for command
confirmation, diagnosis and recovery.

4. Spacecraft State 5. Recovery Actions
e.g. Switch is still on e.g. Retry switch command

t t

.g. Current is non-zerc

! t
1. Commands given to 2. Quantitative data from

spacecraft systems spacecraft sensors
e.g. Turn off switch e.g. Current = 0.3 amps

Figure I. Information Flow in Livingstone

The capabilities of the Livingstone inference engine can be
divided into two parts: mode identification (MI) and mode
reconfiguration (MR). MI is responsible for identifying the
current operating or failure mode of each component in the
spacecraft. Following a component failure, MR is
responsible for suggesting reconfiguration actions that
restore the spacecraft to a configuration that achieves all
current configuration goals required by the Exec.
Livingstone can be viewed as a discrete model-based
controller in which MI provides the sensing component and
MR provides the actuation component. MI's mode
inference allows the Exec to reason about the state of the



spacecraftin termsofcomponentmodesorevenhighlevel
capabilitiessuchas"ableto producethrust"ratherthanin
termsoflowlevelsensorvalues.MRsupportstherun-time
generationof novel reconfigurationactionsto return
componentstothedesiredmodeor tore-enablehighlevel
capabilitiessuchas"abletoproducethrust".

Livingstoneusesalgorithmsadaptedfrom model-based
diagnosis[11,12]toprovidetheabovefunctions.Thekey
idea underlyingmodel-baseddiagnosisis that a
combinationof componentmodesisapossibledescription
of thecurrentstateof thespacecraftonlyif thesetof
modelsassociatedwiththesemodesisconsistentwiththe
observedsensorvalues.FollowingdeKleerandWilliams
[13],MIusesaconflictdirectedbest-firstsearchtofindthe
mostlikelycombinationof componentmodesconsistent
withtheobservations.Analogously, MR uses the same
search to find the least-cost combination of commands that

achieve the desired goals in the next state. Furthermore,

both MI and MR use the same system model to perform
their function. The combination of a single search

algorithm with a single model, and the process of exercising
these through multiple uses, contributes significantly to the
robustness of the complete system. Note that this
methodology is independent of the actual set of available
sensors and commands. Furthermore, it does not require
that all aspects of the spacecraft state are directly

observable, providing an elegant solution to the problem of
limited observability.

The use of model-based diagnosis algorithms immediately
provides Livingstone with a number of additional features.
First, the search algorithms are sound and complete,
providing a guarantee of coverage with respect to the
models used. Second, the model building methodology is
modular, which simplifies model construction and
maintenance, and supports reuse. Third, the algorithms
extend smoothly to handling multiple faults and recoveries
that involve multiple commands. Fourth, while the
algorithms do not require explicit fault models for each
component, they can easily exploit available fault models to
find likely failures and possible recoveries.

Livingstone extends the basic ideas of model-based
diagnosis by modeling each component as a finite state
machine, and the whole spacecraft as a set of concurrent,
synchronous state machines, Modeling the spacecraft as a
concurrent machine allows Livingstone to effectively track
concurrent state changes caused either by deliberate
command or by component failures. An important feature is
that the behavior of each component state or mode is
captured using abstract, or qualitative, models [ 14]. These
models describe qualities of the spacecraft's structure or
behavior without the detail needed for precise numerical
prediction, making abstract models much easier to acquire
and verify than quantitative engineering models. Examples
of qualities captured are the power, data and hydraulic
connectivity of spacecraft components and the directions in
which each thruster provides torque. While such models
cannot quantify how the spacecraft would perform with a
failed thruster for example, they can be used to infer which
thrusters are failed given only the signs of the errors in

spacecraft orientation. Such inferences are robust since
small changes in the underlying parameters do not affect
the abstract behavior of the spacecraft. In addition, abstract
models can be reduced to a set of clauses in propositional
logic. This form allows behavior prediction to take place via
unit propagation, a restricted and very efficient inference
procedure.

It is important to note that the Livingstone models are not
required to be explicit or complete with respect to the actual
physical components. Often models do not explicitly
represent the cause for a given behavior in terms of a
component's physical structure. For example, there are
numerous causes for a stuck switch: the driver has failed,
excessive current has welded it shut, and so on. If the

observable behavior and recovery for all causes of a stuck
switch are the same, Livingstone need not closely model the
physical structure responsible for these fine distinctions.
Models are always incomplete in that they have an explicit
unknown failure mode. Any component behavior that is
inconsistent with all known nominal and failure modes is

consistent with the unknown failure mode. In this way,
Livingstone can still infer that a component has failed,
though the failure was not foreseen or was simply left
unmodeled because no recovery is possible. By modeling
only to the level of detail required to make relevant
distinctions in diagnosis (distinctions that prescribe
different recoveries or different operation of the system) we
can describe a system with qualitative "common-sense"
models which are compact and quite easily written.

6. MARS RELATED APPLICATIONS

The intent behind model-based autonomy is to create
generic, high capability reasoning systems that can be
adapted to a wide range of applications simply by writing
the appropriate models. As such, model-based autonomy
might be able to contribute to the control of a variety of
elements of a piloted Mars mission. In this early stage of
Mars mission definition, model-based autonomy is involved
in the prototyping of a number of specific mission elements.

Closed-Loop Ecological Life Support Systems
(CELSS)

In order to transport and support humans for Mars
expeditions, NASA's Human Exploration and Development
of Space (HEDS) requirements state a need for autonomous
operation of life support, ISRU and transport equipment.
During a Mars expedition, autonomous plant operations
would allow unmanned systems to prepare for human
arrival, protect crew and resources by rapidly responding to
critical failures, and free humans from routine operations,

allowing greater exploration.

At NASA's Johnson Space Center (JSC), a closed loop life
support testbed called Biop/ex has been constructed. The
Bioplex consists of three sections: a three story cylindrical
living quarters similar to the Mars habitats discussed in
various mission proposals; a plant chamber where wheat is
grown to provide food and exchange CO2 for 02; and an
incinerator chamber used to eliminate solid waste and

produce CO2. The most recent Bioplex testing is referred



toastheProductGasTransferphaseasit concentrateson
generationanddistributionof productgases(CO2fromthe
crewandincineratorand02fromtheplants)anddoesnot
yetaddressissuessuchaswastewaterrecyclingorpower
management.

A JSCadvanceddevelopmentgrouphasdevelopedan
autonomouscontrolsystemto operatetheproductgas
transferphaseofBioplex[15].Thissystem,baseduponthe
3T autonomyarchitecture[16],maintainstheappropriate
atmospherein eachchamberby extractingandstoring
productgasesandcoordinatingactivitiessuchasfiringthe
incineratororopeningtheplantchamberforhumanaccess.
Thesystemsuccessfullycontrolledgastransferduringtest
in whicha humancrewinhabitedtheBioplexfor ninety
days.It wasnotexpected,however,tomaintainoperation
in thefaceoffailures,thoughmanywouldlikelyoccurover
a4-yearmission.

WearecurrentlyworkingtointegratetheLivingstonemode
identificationandreconfigurationenginewithJSC's3T
architecture,addingtoit theabilitytodeterminethecurrent
stateof thetestbedandrespondtoanomaloussituationsor
failuresbyperforminghighlevel,system-widereasoning.
Thiswill resultin a single,reusablearchitecturewhich
maintainsthebestpossibleoperationof aregenerativelife
supportsystemandothercomplexphysicalplantsduring
bothnominaloperationandfailures,somewhatanalogous
to the autonomicand immunefunctionsof a living
organism.

We intendto demonstratethe combinedsystemby
maintainingoperationof thetestbedoveranextendedtest
periodandprovidingbothfully autonomousandhuman-
centeredoperation.Totestthesystem,anoutsideexaminer
will beemployedto introducefailuresintothetestbedas
desiredwhichthe systemwill diagnoseandattemptto
mitigate.

Thesecondgoalis todemonstrateandextendtheabilityof
model-basedsystemsto reduceanalysis,developmentand
operationscosts.Thetestbedapplicationwill be rapidly
developedwithtoolsthatcouldbeusedtodevelopmission
applications.Userswilldevelopandoperatethetestbedby
manipulatingexplicitmodelswithvisualtools.If previous
experienceistobebelieved,farlesseffortwillberequired
to develop,understandandrevisethesystemthanin an
approachwheresystemmodelis implicitbutstillmustbe
maintained.

If successful,thisdemonstrationwill increasethelikelihood
thatautonomytechnologiesbeingdevelopedbyNASAare
appropriateandsufficientlymaturewhentheyarerequired
for HEDSmissionsto Marsandotherdestinations.It will
also ensurethat the necessarytechnologiescan be
integratedandwill identifyneededextensionsbeforesuch
shortcomingscouldimpactthecriticalpathofamission.In
addition,JSCwill havea prototypeof a reusable,fault-
tolerant,high-capabilityautonomouscontrolsystemandthe
expertiseto applythissystemto a flightexperimentor
mission.Thiscouldbeappliedto anycomplexphysical
systemthatmustbecontrolledandmaintainedoveran

extendedperiodof timesuchasspacecraft,powerplants,
ISRUmachinery,andautonomousor semiautonomous
surfacevehicles.

In-situ Resource Utilization

In-situ resource utilization, or "living off the land", is
critical to making a piloted Mars mission robust and
affordable [1]. More specifically, it is envisioned that in-
situ propellant production (ISPP) plants will arrive on Mars
years before humans and begin combining hydrogen
brought from Earth with CO2 from the Martian atmosphere
to create methane. This fuel will power the ascent vehicle
that will lift the crew off Mars to begin their trip home in
addition to powering any methane-fueled surface vehicles
the astronauts might possess.

Though the chemical reactions involved are conceptually
quite simple, on Mars they are somewhat complicated by
issues such as the low atmospheric pressure and slow
contamination of the ISPP catalysts by trace elements in the
Martian atmosphere. To ensure that adequate ISPP
capability is available for future Mars missions, NASA has
begun to explore ISPP designs and build prototype
hardware for operation in Mars-like test chambers. Both
JSC and NASA Kennedy Space Center (KSC) are involved
in early ISPP development, and the KSC team is integrating
Livingstone into their ISPP prototyping efforts.

The short-term focus of this collaboration is to integrate
Livingstone's ability to diagnose and mitigate failures with
existing KSC model-based technology to gain experience
with a model-based monitoring, diagnosis and recovery
system for ISPP. A secondary short-term goal is to
determine if any other autonomy technology previously
invested in by NASA, for example the Smart Executive, can
be reused on the ISPP testbed, thus increasing capability
without greatly increasing cost.

A longer term goal is to continue research into control of
physical systems which must continuously adjust their
operation to unforeseen degradation in capability (for
example an ISPP unit where Martian dust covers solar
panels or slowly clogs air filters) rather than taking a
discrete recovery action as Livingstone does. Related issues
include reasoning about hybrid discrete/continuous systems,

predictive diagnosis and relearning models of the
continuous dynamic behavior of the system. This research
should contribute to development of ISPP and other
systems that are robust and yet run at the ragged edge of
optimality throughout their lifetimes, neither being overly
conservative nor exceeding their remaining degraded
capabilities.

Autonomous Rovers

The Remote Agent system, described above and consisting

of a planner, a smart execution system and Livingstone, is
being adapted for use on the NASA Ames Marsokhod rover
as part of an effort to demonstrate increased rover
autonomy. That effort is described in [17].



7. ACKNOWLEDGEMENTS

Thispapertouchesontheworkof agreatmanypeopletoo
numeroustonamehere.TheAutonomousSystemsGroup
atNASAAmesResearchCenterconsistsof abouttwenty
computerscienceresearcherspursuingall mannersof
autonomyresearch,muchofwhichwasnotmentionedhere.
Membersof theJPLNewMillenniumProgramandAI
GroupcontributedtotheRemoteAgentarchitectureandto
makingit work on a flight platform. Advanced
developmentgroupsatNASAJSC(3TandBioplexPGT),
NASAKSC(ISPPandKATE)andJPL(spacebased
interferometry)havesharedtheirexpertisewithusandare
helpingto pushthemodel-basedautonomytechnologies
describedhereforward.

REFERENCES

[9] B. Pell,D. E. Bernard,S. A. Chien,E. Gat,N.
Muscettola,P. P. Nayak,M. D. Wagner,and B. C.
Williams,An AutonomousSpacecraftAgentPrototype,
Proceedingsof the First InternationalConferenceon
AutonomousAgents,1997.

[10] D. E. Bernardet AI. Design of the Remote Agent
Experiment for Spacecraft Autonomy. Proceedings of IEEE
Aero-98.

[11] J. de Kleer and B. C. Williams, Diagnosing Multiple

Faults, Artificial Intelligence, Vol 32, Number 1, 1987.

[12] J. de Kleer and B. C. Williams, Diagnosis With
Behavioral Modes, Proceedings of IJCAI-89, 1989.

Many of the following papers may be found on the World
Wide Web at http://ic-www.arc.nasa.gov/ic/proiects/mba/

[1] R. Zubrin and R. Wagner. The case for Mars: The plan
to settle the Red Planet and why we must. The Free Press,
1996.

[2] S. J. Hoffman and D. I. Kaplan, editors. Human
Exploration of Mars: The Reference Mission of the NASA
Mars Exploration Study Team. NASA Special Publication
6107. July 1997.

[3] A. H. Mishkin, J. C. Morrison, T. T. Nguyen, H. W.
Stone, B. K. Cooper and B. H. Wilcox. Experiences with
operations and autonomy of the Mars Pathfinder
microrover. In Proceedings of the IEEE Aerospace
Conference, Snowmass, CO 1998.

[4] G. M. Brown, D. E. Bernard and R. D. Rasmussen.

Attitude and articulation control for the Cassini Spacecraft:
A fault tolerance overview. In 14 th AIAA/IEEE Digital
Avionics Systems Conference, Cambridge, MA, November
1995.

[13] J. de Kleer and B. C. Williams, Artificial Intelligence,
Volume 51, Elsevier, 1991.

[14] . S. Weld and J. de Kleer, Readings in Qualitative
Reasoning About Physical Systems, Morgan Kaufmann
Publishers, Inc., San Mateo, California, 1990.

[15] D.Schreckenghost, M. Edeen, R. P. Bonasso, and J.
Erickson. Intelligent control of product gas transfer for air
revitalization.. Abstract submitted for 28th International

Conference on Environmental Systems (ICES), July 1998.

[16] R. P. Bonasso, R.J. Firby, E. Gat, D. Kortenkamp, D.
Miller and M. Slack. Experiences with an architecture for
intelligent, reactive agents. In Journal of Experimental and
Theoretical AI, 1997.

[17] J. Bresina, G. A. Dorais, K. Golden, D. E. Smith, R.

Washington, Autonomous Rovers for Human Exploration
of Mars. Proceedings of the First Annual Mars Society
Conference. Boulder, CO, August 1998. To Appear.

[18] B. C. Williams and P. P. Nayak. Immobile Robots: AI
in the New Millennium. In AI Magazine, Fall 1996.

[5] B. C. Williams and P. Nayak, A Model-based Approach
to Reactive Self-Configuring Systems, Proceedings of
AAAI-96, 1996.

[6] B C. Williams and B. Millar. 1996. Automated

Decomposition of Model-based Learning Problems. In
Proceedings of QR-96.

[7] N. Muscettola, B. Smith, C. Fry, S. Chien, K. Rajan, G
Rabideau and D. Yan, Onboard Planning For New
Millenium Deep Space One Autonomy, Proceedings of
IEEE Aerospace Conference, 1997

[19] B. C. Williams and P. P. Nayak. A Reactive Planner
for a Model-based Executive. In Proceedings of IJCAI-97.

[20] N. Muscettola. HSTS: Integrating planning and
scheduling. In Mark Fox and Monte Zweben, editors,
Intelligent Scheduling. Morgan Kaufmann, 1994.

[21] V. Gupta, R. Jagadeesan, V. Saraswat. Computing with

Continuous Change. Science of Computer Programming,
1997.

[8] B. Pell, E. Gat, R. Keesing, N. Muscettola, and B.

Smith. Robust periodic planning and execution for
autonomous spacecraft.


